contoh soal dan jawaban limit dalam bentuk akar
1. contoh soal dan jawaban limit dalam bentuk akar
Jawab:
8 ⅓
Penjelasan dengan langkah-langkah:
[tex]\displaystyle \lim_{x\to\infty}\frac{\sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}}{\sqrt{25x^4+x^3-2x^2}-\sqrt{25x^4-5x^3-3x^2}}\\=\lim_{x\to\infty}\frac{\sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}}{\sqrt{25x^4+x^3-2x^2}-\sqrt{25x^4-5x^3-3x^2}}~\frac{\sqrt{25x^4+x^3-2x^2}+\sqrt{25x^4-5x^3-3x^2}}{\sqrt{25x^4+x^3-2x^2}+\sqrt{25x^4-5x^3-3x^2}}[/tex]
[tex]\displaystyle=\lim_{x\to\infty}\frac{\left ( \sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}\right )\left ( \sqrt{25x^4+x^3-2x^2}+\sqrt{25x^4-5x^3-3x^2}\right )}{25x^4+x^3-2x^2-\left ( 25x^4-5x^3-3x \right )}\\=\lim_{x\to\infty}\frac{x\left ( \sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}\right )\left ( \sqrt{25x^2+x-2}+\sqrt{25x^2-5x-3}\right )}{6x^3+x^2}[/tex]
[tex]\displaystyle =\lim_{x\to\infty}\frac{\frac{x}{x}~\frac{\sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}}{x}~\frac{\sqrt{25x^2+x-2}-\sqrt{25x^2-5x-3}}{x}}{\frac{6x^3+x^2}{x^3}}\\=\lim_{x\to\infty}\frac{\left ( \sqrt{4+\frac{4}{x}-\frac{9}{x^2}} +\sqrt{9+\frac{1}{x}-\frac{4}{x^2}}\right )\left ( \sqrt{25+\frac{1}{x}-\frac{2}{x}} -\sqrt{25-\frac{5}{x}-\frac{3}{x^2}}\right )}{6+\frac{1}{x}}\\=\frac{25}{3}\\=8\tfrac{1}{3}[/tex]
2. contoh soal menentukan limit fungsi bentuk tak tentu
ABCDEFGHIJKLMNOPQRSTUVWXYZ
3. contoh soal limit yang berhubungan tentang kehidupan, dalam bentuk soal cerita,, atau blog nya aja boleh
kehidupan manusia atau seperti apa???
4. 1.mencari rumus dari sifat "limit fungsi bentuk tak hingga" dan tulis contoh soal dari masing-masing sifat tersebut
Jawaban:
Sifat limit fungsi bentuk tak hingga adalah sebagai berikut:
1.Limit tak hingga dari konstanta kali suatu fungsi adalah sama dengan konstanta dikalikan dengan limit tak hingga dari fungsi tersebut. Dalam simbol:
lim k*f(x) = k * lim f(x) (untuk k ≠ 0)
x→∞
Contoh soal:
Tentukan limit dari fungsi f(x) = 5x^3 ketika x mendekati tak hingga.
Jawab:
lim 5x^3 = 5 * lim x^3 = tak hingga
x→∞
2.Limit tak hingga dari penjumlahan atau pengurangan fungsi-fungsi yang memiliki limit tak hingga sama dengan limit tak hingga dari setiap fungsi. Dalam simbol:
lim [f(x) ± g(x)] = lim f(x) ± lim g(x)
x→∞
Contoh soal:
Tentukan limit dari fungsi f(x) = x^2 + 2x dan g(x) = 3x - 1 ketika x mendekati tak hingga.
Jawab:
lim [f(x) + g(x)] = lim f(x) + lim g(x)
x→∞
lim [x^2 + 2x + 3x - 1] = lim x^2 + lim 5x - lim 1 = tak hingga
x→∞ = tak hingga = tak hingga
3.Limit tak hingga dari perkalian atau pembagian dua fungsi yang memiliki limit tak hingga sama dengan limit tak hingga dari masing-masing fungsi dikalikan atau dibagi. Dalam simbol:
lim [f(x) * g(x)] = lim f(x) * lim g(x)
x→∞
lim [f(x) / g(x)] = lim f(x) / lim g(x)
x→∞
Contoh soal:
Tentukan limit dari fungsi f(x) = 2x^2 dan g(x) = x + 1 ketika x mendekati tak hingga.
Jawab:
lim [f(x) * g(x)] = lim f(x) * lim g(x)
x→∞
lim [2x^2 * (x + 1)] = lim 2x^3 + lim 2x^2
x→∞ = tak hingga = tak hingga
Tentukan limit dari fungsi f(x) = 3x^2 dan g(x) = 4x - 1 ketika x mendekati tak hingga.
Jawab:
lim [f(x) / g(x)] = lim f(x) / lim g(x)
x→∞
lim [3x^2 / (4x - 1)] = lim (3/4) * (x^2 / (x - 1/4)) = tak hingga
x→∞ = tak hingga = tak hingga
Semoga membantu!
5. contoh soal limit trigonometri tak hingga beserta jawabannya
Jawaban:
ini jawabannya ya maaf kalau salah6. contoh soal dan jawaban limit fungsi.
Jawaban:
lim
x → 2
2x = …
Pembahasan / penyelesaian soal
lim
x → 2
2x = 2 . 2 = 4
7. contoh soal limit tak terhingga
ini yaaa lim tak hingga kan
8. apakah ada contoh soal cerita untuk limit?
lim x"+4x+-2 note = (") pangkat 2 x->2
9. bagaimana bentuk soal dan jawaban limit
contohnya gini...!!
Hitung lah nilai limit berikut ini ... !!!
lim x²+2x-3
x ⇒ 1 x²-1
lim (x+3) (x-1)
x ⇒ 1 (x+1) (x-1)
lim x+3
x ⇒ 1 x+1
= 1 + 3
1 + 1
= 4
2
= 2
10. contoh soal limit fungsi perkalian sekawan
maaf klo salah
smga bener
Tetap Semangat
11. contoh soal limit beserta jawabanya
Semoga membantu:)
Maaf klo gak jelas fotonya:)
12. Contoh soal teorema limit
1. Buktikan kalau [tex]\lim_{n \to 0} \frac{sin(x)}{x}[/tex] = 1! (Kalau pakai L'Hopitals' Rule, akan terjadi Circular Reasong, jadi pakai Trigonometri)
2. Buktikan kalau [tex]\lim_{n \to 0} \frac{1-x}{x}[/tex] itu tidak ada!
3. Buktikan [tex]\lim_{n \to \infty} \frac{cos(x)}{x}[/tex] itu 0 dengan menggunakan sandwich/squeeze theorem
4. Buktikan L'Hopital's Rule
13. 5 contoh soal limit tak hingga dengan penyelesaiannya!
semoga membantu tapi cuma satu aja sorry
14. Contoh soal dan pembahasan limit kelas 10
Jika f(x) = x2 − 6x + 8, tentukan interval f(x) naik dan interval f(x) turun!
Jawab :
f '(x) = 2x − 6
f(x) naik ⇒ f '(x) > 0
⇔ 2x − 6 > 0
⇔ 2x > 6
⇔ x > 3
f(x) turun ⇒ f '(x) < 0
⇔ 2x − 6 < 0
⇔ 2x < 6
⇔ x < 3
Jadi f(x) naik pada interval x > 3 dan turun pada interval x < 3.
15. Contoh soal limit dan penyelesaiannya
Jawaban:
Jawaban Terlampir di atas
- PelitaRayaSchool -
16. contoh soal limit fungsi trigonometri
Tentukan hasil dari soal limit berikut
Tentukan hasil dari soal limit berikut
[tex] \lim_{x \to \inft0} \frac{sin 3x}{x} [/tex]=1
[tex] \lim_{x \to \inft0 \frac{1-cost}{sint} } [/tex]=0
17. Contoh soal teorema limit kelas 11
Lim
x->2. (4x+6)
=4(2)+6
=8+6
=14
18. Contoh soal limit fungsi
Jawaban:
CONTOHNYA ADA PADA GAMBAR
Penjelasan dengan langkah-langkah:
SEMOGA MEMBANTU
SEMANGAT BELAJAR
19. Contoh soal limit tak tentu dan tentu
Jawaban:
Contoh Soal Limit Fungsi Aljabar
Penjelasan dengan langkah-langkah:
maaf kalo salah kak
20. 5 contoh soal limit fungsi aljabr
5 contoh limit fungsi aljabar
Definisi: [tex] \lim \limits_{{x}{\rightarrow}{a}} [/tex]f(x) = f(a) dengan f(a) ≠ [tex]\frac{0}{0} [/tex] ≠ [tex]\frac{\infty}{\infty} [/tex] ≠ ∞ – ∞
Jika f(a) = [tex]\frac{0}{0} [/tex], maka cara penyelesaiannya dapat dilakukan dengan pemfaktoran.
Pembahasan
Diketahui
Limit fungsi aljabar
Ditanyakan
Tentukan 5 contoh soal limit fungsi aljabar beserta pembahasannya!
Jawab
Langkah 1
Contoh pertama
[tex]\lim \limits_{{x}{\rightarrow}{2}} \frac{x^{2} + 3x - 10}{x - 2}[/tex]
[tex]= \lim \limits_{{x}{\rightarrow}{2}} \frac{(x + 5)(x - 2)}{x - 2}[/tex]
[tex]= \lim \limits_{{x}{\rightarrow}{2}} (x + 5)[/tex]
[tex]= 2 + 5[/tex]
[tex]= 7[/tex]
Langkah 2
Contoh kedua
[tex]\lim \limits_{{x}{\rightarrow}{2}} \frac{x^{2} - 5x + 6}{x^{2} + 2x - 8}[/tex]
[tex]= \lim \limits_{{x}{\rightarrow}{2}} \frac{(x - 3)(x - 2)}{(x + 4)(x - 2)}[/tex]
[tex]= \lim \limits_{{x}{\rightarrow}{2}} \frac{x - 3}{x + 4}[/tex]
[tex]= \frac{2 - 3}{2 + 4}[/tex]
[tex]= \frac{-1}{6}[/tex]
[tex]= -\frac{1}{6}[/tex]
Langkah 3
Contoh ketiga
[tex]\lim \limits_{{x}{\rightarrow}{2}} \left(\frac{2}{x - 2} - \frac{8}{x^{2} - 4}\right)[/tex]
[tex]= \lim \limits_{{x}{\rightarrow}{2}} \left(\frac{2}{x - 2} \:. \:\frac{x + 2}{x + 2} - \frac{8}{x^{2} - 4}\right)[/tex]
[tex]= \lim \limits_{{x}{\rightarrow}{2}} \left(\frac{2(x + 2)}{x^{2} - 4} - \frac{8}{x^{2} - 4}\right)[/tex]
[tex]= \lim \limits_{{x}{\rightarrow}{2}} \left(\frac{2x + 4 - 8}{x^{2} - 4}\right)[/tex]
[tex]= \lim \limits_{{x}{\rightarrow}{2}} \left(\frac{2x - 4}{x^{2} - 4}\right)[/tex]
[tex]= \lim \limits_{{x}{\rightarrow}{2}} \left(\frac{2(x - 2)}{(x + 2)(x - 2)}\right)[/tex]
[tex]= \lim \limits_{{x}{\rightarrow}{2}} \left(\frac{2}{x + 2}\right)[/tex]
[tex]= \frac{2}{2 + 2}[/tex]
[tex]= \frac{2}{4}[/tex]
[tex]= \frac{1}{2}[/tex]
Langkah 4
Contoh keempat
[tex]\lim \limits_{{x}{\rightarrow}{5}} \frac{x^{2} - x - 20}{x - 5}[/tex]
[tex]= \lim \limits_{{x}{\rightarrow}{5}} \frac{(x - 5)(x + 4)}{x - 5}[/tex]
[tex]= \lim \limits_{{x}{\rightarrow}{5}} (x + 4)[/tex]
[tex]= 5 + 4[/tex]
[tex]= 9[/tex]
Langkah 5
Contoh kelima
[tex]\lim \limits_{{x}{\rightarrow}{0}} \frac{6x^{5} - 4x}{2x^{4} + x}[/tex]
[tex]= \lim \limits_{{x}{\rightarrow}{0}} \frac{x(6x^{4} - 4)}{x(2x^{3} + 1)}[/tex]
[tex]= \lim \limits_{{x}{\rightarrow}{0}} \frac{6x^{4} - 4}{2x^{3} + 1}[/tex]
[tex]= \frac{6(0)^{4} - 4}{2(0)^{3} + 1}[/tex]
[tex]= \frac{0 - 4}{0 + 1}[/tex]
[tex]= \frac{-4}{1}[/tex]
[tex]= -4[/tex]
Pelajari lebih lanjut
Contoh soal lain tentang limit
Limit untuk x mendekati 2: brainly.co.id/tugas/13856337 Nilai dari limit x mendekati 2: brainly.co.id/tugas/13928844 Limit bentuk akar: brainly.co.id/tugas/157129
------------------------------------------------
Detil Jawaban
Kelas : 11
Mapel : Matematika
Kategori : Limit
Kode : 11.2.7
#TingkatkanPrestasimu
21. Nilai limit fungsi aljabar dan contoh soalnya
Jawaban:
100 la tak tau ke
Penjelasan dengan langkah-langkah:
macam tu tau
22. Contoh soal limit fungsi aljabar metode turunan bentuk akar,beserta penyelesainnya
contoh:
Tentukan nilai dari
Lim x→3 (√x - √3)/(x - 3) = ...
Lim x→3 (√x - √3)/(x - 3) =
Lim x→3 (√x - √3)/((√x - √3)(√x + √3)) =
Lim x→3 1/(√x + √3)) = 1/ (2√3) = 1/6 √3
Contoh :
Lim x→3 (2 - √(2x - 2))/(x - 3) =
dengan menggunakan turunan
(-1/(√(2x - 2))/1 = - 1/2
Semoga membantu
23. Contoh soal dan pembahasan limit fungsi aljabar
a.lim 4
x >3
b.lim 3x
x >3
c.lim 3x/2
x->2
sorry cmn soalnya aja
24. contoh soal limit tak tentu nol per nol
Jawab:
[tex]\displaystyle \lim_{x\to 2}\frac{x^4-3x^3+2x^2-4x+8}{x^4-5x^3+13x^2-24x+20}=\cdots[/tex]
Penjelasan dengan langkah-langkah:
Tes limit
[tex]\displaystyle \lim_{x\to 2}\frac{x^4-3x^3+2x^2-4x+8}{x^4-5x^3+13x^2-24x+20}=\frac{0}{0}[/tex]
Gunakan aturan L'Hopital untuk mempermudah penyelesaian
[tex]\displaystyle \lim_{x\to 2}\frac{x^4-3x^3+2x^2-4x+8}{x^4-5x^3+13x^2-24x+20}\\=\lim_{x\to 2}\frac{4x^3-9x^2+4x-4}{4x^3-15x^2+26x-24}\\=\frac{0}{0}[/tex]
Lakukan lagi hingga hasil nya tidak [tex]\displaystyle \frac{0}{0}[/tex]
[tex]\displaystyle \lim_{x\to 2}\frac{4x^3-9x^2+4x-4}{4x^3-15x^2+26x-24}\\=\lim_{x\to 2}\frac{12x^2-18x+4}{12x^2-30x+26}\\=\frac{16}{14}\\=\frac{8}{7}[/tex]
Cara biasa
Faktorkan x⁴ - 3x³ + 2x² - 4x + 8 dengan metode Horner
[tex]\begin{array}{cccccc}\multicolumn{1}{c|}{} & 1 & -3 & 2 & -4 & 8\\\multicolumn{1}{c|}{2} & & 2 & -2 & 0 & -8\\\cline{2-6} & \multicolumn{1}{|c}{1} & -1 & 0 & -4 & \multicolumn{1}{|c}{0}\\\cline{6-6}\multicolumn{1}{c|}{2} & & 2 & 2 & 4\\\cline{2-6} & 1 & 1 & 2 & \multicolumn{1}{|c}{0}\\\cline{5-5}\end{array}[/tex]
Jadi
[tex]\displaystyle x^4-3x^3+2x^2-4x+8=(x-2)^2(x^2+x+2)[/tex]
Faktorkan x⁴ - 5x³ + 13x² - 24x + 20
[tex]\begin{array}{cccccc}\multicolumn{1}{c|}{} & 1 & -5 & 13 & -24 & 20\\\multicolumn{1}{c|}{2} & & 2 & -6 & 14 & -20\\\cline{2-6} & \multicolumn{1}{|c}{1} & -3 & 7 & -10 & \multicolumn{1}{|c}{0}\\\cline{6-6}\multicolumn{1}{c|}{2} & & 2 & -2 & 10\\\cline{2-6} & 1 & -1 & 5 & \multicolumn{1}{|c}{0}\\\cline{5-5}\end{array}[/tex]
Jadi
[tex]\displaystyle x^4-5x^3+13x^2-24x+20=(x-2)^2(x^2-x+5)[/tex]
Maka
[tex]\displaystyle \lim_{x\to 2}\frac{x^4-3x^3+2x^2-4x+8}{x^4-5x^3+13x^2-24x+20}\\=\lim_{x\to 2}\frac{(x-2)^2(x^2+x+2)}{(x-2)^2(x^2-x+5)}\\=\lim_{x\to 2}\frac{x^2+x+2}{x^2-x+5}\\=\frac{2^2+2+2}{2^2-2+5}\\=\frac{8}{7}[/tex]
25. soal tentang limit fungsi aljabar bentuk tak tentu
semua menggunakan rumus turunan
26. contoh soal fungsi limit dalam bidang ekonomi
Penjelasan dengan langkah-langkah:
maaf jika salah
semlga membantu :)
27. contoh soal limit dan limit fungsi aljabarplis bantu jawab
Jawab:
Mapel: Matematika
Kelas: 11
Contoh Soal 1:
Tentukan nilai limit berikut:
lim(x->3) (2x - 5)
Jawaban 1:
Untuk menentukan nilai limit tersebut, kita hanya perlu menggantikan x dengan nilai yang mendekati 3. Jadi, jika kita substitusikan x dengan 3, kita dapat menghitungnya sebagai berikut:
lim(x->3) (2x - 5) = 2(3) - 5 = 6 - 5 = 1
Jadi, nilai limit dari fungsi tersebut saat x mendekati 3 adalah 1.
Contoh Soal 2:
Tentukan nilai limit berikut:
lim(x->-2) (x^2 + 3x - 2) / (x + 2)
Jawaban 2:
Untuk menentukan nilai limit tersebut, kita hanya perlu menggantikan x dengan nilai yang mendekati -2. Jadi, jika kita substitusikan x dengan -2, kita dapat menghitungnya sebagai berikut:
lim(x->-2) (x^2 + 3x - 2) / (x + 2) = (-2)^2 + 3(-2) - 2 / (-2 + 2) = 4 - 6 - 2 / 0
Namun, pada pembagian dengan 0, limit tidak terdefinisi atau dinyatakan sebagai tak hingga. Jadi, nilai limit dari fungsi tersebut saat x mendekati -2 tidak terdefinisi.
Penjelasan dengan langkah-langkah:
Semoga Bermanfaat
28. contoh soal teorima limit utama
contoh soal dan pembahasan nya
Nomor 1

A. 0
B. 3
C. 5
D. 7
E. Tak hingga
Pembahasan
Limit seperti soal diatas akan menghasilkan angka yang dilimitkan yaitu 7.
Jawaban: D
Nomor 2

A. 1
B. 3
C. 4
E. x
D Tak hingga
Pembahasan
Ganti x = 3
3 + 1 = 4
Jawaban: C
Nomor 3

A. 0
B. 1
C. 5
D. 6
E. Tak hingga
Pembahasan
Ganti x = 0
5 . 0 + 1 = 1
Jawaban: B
Nomor 4

A. 0
B. 1
C. 2
D. 3
E. 4
Pembahasan
Ganti x = 0
(5 . 0 - 1) (0 - 1) = (-1) . (-1) = 1
Jawaban: B
Nomor 5

A. 1
B. 2
C. 5
D. 10
E. Tak hingga
Pembahasan
Ganti x = 10
(10 + 2) / (10 - 4) = 12/6 = 2
Jawaban: B
29. contoh soal limit tak hingga beserta jawabannya
Jawab:
6
Penjelasan dengan langkah-langkah:
[tex]\displaystyle \lim_{x\to\infty}\left ( \sqrt{4x^2+16x+8}-\sqrt{x^2+2x}-\sqrt{x^2-6x+1} \right )[/tex]
Ingat lagi rumus cepat limit tak hingga [tex]\displaystyle \lim_{x\to\infty}\left ( \sqrt{ax^2+bx+c}-\sqrt{ax^2+qx+r} \right )=\frac{b-q}{2\sqrt{a}}[/tex]. Manipulasi soal sehingga melibatkan rumus nya
[tex]\displaystyle \lim_{x\to\infty}\left ( \sqrt{4x^2+16x+8}-\sqrt{x^2+2x}-\sqrt{x^2-6x+1} \right )\\=\lim_{x\to\infty}\left ( \sqrt{4x^2+16x+8}-2x+x-\sqrt{x^2+2x}+x-\sqrt{x^2-6x+1} \right )\\=\lim_{x\to\infty}\left ( \sqrt{4x^2+16x+8}-\sqrt{4x^2}+\sqrt{x^2}-\sqrt{x^2+2x}+\sqrt{x^2}-\sqrt{x^2-6x+1} \right )\\=\frac{16-0}{2\sqrt{4}}+\frac{0-2}{2\sqrt{1}}+\frac{0-(-6)}{2\sqrt{1}}\\=4-1+3\\=6[/tex]
30. Contoh soal limit fungsi kelas 11
semoga bermanfaat ok jangan lupa follow
31. buatlah 4 contoh soal limit trigonometri
Mapel : Math
Jawab tuh.......
#Trigonometri
32. soal limit bentuk seperti apa
Penjelasan dengan langkah-langkah:
Maksud gurumu itu semua limit tak hingga bentuk tak tentu
Contoh
Bentuk tak tentu (∞/∞)
[tex]\lim_{x \to \infty} \frac{f(x)}{g(x)}\\\lim_{x \to \infty} \frac{3x^2-4x+6}{2x^2+x-5}[/tex]
Bentuk tak tentu (∞-∞)
[tex]\lim_{x \to \infty} \sqrt{f(x)} -\sqrt{g(x)} \\ \lim_{x \to \infty} \sqrt{x+1} -\sqrt{x-1} \\ \lim_{x \to \infty} \sqrt{x^2+2x-1} -\sqrt{x^2-4x+5}[/tex]
33. contoh soal limit sin cos tan
silakan lihat channel youtube "Supaat Mengajar".
disitu ada banyak contoh soal dan pembahasan limit fungsi trigonometri.
semoga membantu
34. contoh soal limit beserta solusinya
lim x mendekati 2 = (x² - 2)+3x
penyelesaian :
lim x > 2 = (2² - 2) + 3×2
= (4-2) + 6 = 8
Semoga membantu :)
35. Contoh soal limit fungsi aljabar metode turunan bentuk akar sama penyelesainnya yang jelas...
Misalnya
Lim x² - 4
x→2 ------------- hasilnya 0/0, bentuknya harus diubah. Caranya
√x - √2
* Dengan metode aljabar
Lim (x-2)(x+2) (√x-√2)(√x+√2)(x+2)
x→2 ------------- = --------------------------- = (√x+√2)(x+2) = 8√2
√x - √2 √x-√2
Dengan metode turunan
Lim 2x
x→2 ------------------- =2x.2√x = 4x√x = 8√2
1/2(x)^(-1/2)
36. tlg contoh soal limit dong
1. Nilai dari lim x→∞ [√(x+1) - √(x-1)] adalah …..
a. -∞
b. -2
c. 0
d. 2
e. ∞
2. Nilai dari lim x→∞ [√(x2+2) - √x2-x)] adalah …..
a. -∞
b. – 1
c. 0
d. 1
e. ∞
klik aja DOC
tolong jadikan yang terbaik ya
37. contoh soal limit yg di matematika
Jawab:
[tex]\displaystyle \lim_{x\to 0}\frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^3}=\cdots[/tex]
Penjelasan dengan langkah-langkah:
[tex]\displaystyle \lim_{x\to 0}\frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^3}\\=\lim_{x\to 0}\frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^3}~\frac{\sqrt{1+\tan x}+\sqrt{1+\sin x}}{\sqrt{1+\tan x}+\sqrt{1+\sin x}}\\=\lim_{x\to 0}\frac{1+\tan x-(1+\sin x)}{x^3\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}\\=\lim_{x\to 0}\frac{\frac{\sin x}{\cos x}-\sin x}{x^3\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}[/tex]
[tex]\displaystyle =\lim_{x\to 0}\frac{\frac{\sin x-\sin x\cos x}{\cos x}}{x^3\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}\\=\lim_{x\to 0}\frac{\sin x(1-\cos x)}{x^3\cos x\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}\\=\lim_{x\to 0}\frac{\sin x\left [ 1-\left ( 1-2\sin^2\frac{x}{2} \right ) \right ]}{x^3\cos x\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}[/tex]
[tex]\displaystyle =2\lim_{x\to 0}\frac{\sin x}{x}\lim_{x\to 0}\left ( \frac{\sin\frac{x}{2}}{x} \right )^2\lim_{x\to 0}\frac{1}{\cos x\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}\\=2(1)\left ( \frac{\frac{1}{2}}{1} \right )^2\frac{1}{1(1+1)}\\=\frac{1}{4}[/tex]
38. Contoh soal soal limit fungsi beserta jawabannya
Pertanyaan
lim x → 3 : x² + 1
Jawaban
lim x → 3 : 3² + 1
= 9 + 1
= 10
39. contoh soal limit fungsi dan jawaban
limit dari x mendekati 3 dari (x^2 + 3x - 18)/(x^2 - 3x)
jawabannya 3
40. contoh soal Limit fungsi beserta Penyelesaiannya.
Contoh nya
Lim (2x^3-8x) =2-(-1)^3-8(-1)
X=-1 =(-6)-(-7)=48