Contoh Soal Dan Pembahasan Fungsi Trigonometri

Contoh Soal Dan Pembahasan Fungsi Trigonometri

minta contoh soal turunan fungsi trigonometri serta pembahasan yaa

Daftar Isi

1. minta contoh soal turunan fungsi trigonometri serta pembahasan yaa


Limit fungsi trigonometri adalah nilai pendekatan suatu sudut pada fungsi trigonometri. Atau lim x→ ∞ f(x), dan f(x) merupakan fungsi trigonometri maka nilai dari limit tersebut disebut limit fungsi trigonometri             . Perhitungan limit fungsi trigonometri sebenarnya tidak jauh berbeda dari perhitungan limit fungsi aljabar, tetapi ada rumus tambahan yaitu rumus-rumus identitas trigonometri yang sangat  berguna untuk menyelesaikan persoalan menentukan nilai limit fungsi trigonometri. Sekarang kita pelajari dahulu rumus-rumus pendukung tersebut:
contoh soal :

semoga membantu ^_^



2. contoh soal fungsi grafik trigonometri di bidang elektronika dan pembahasannya


bisa pakai gelombang berjalan, 
y=asin2pi(wt+lamda).
makenya misak di bidang laser.

3. soal dan pembahasan fungsi trigonometri


Fungsinya untuk menghubungkan antara sudut2 dalam suatu segitiga

4. berikan 5 contoh soal dan pembahasan trigonometri dari persamaan sederhana hingga kuadrat​


Persamaan Trigonometri

Persamaan trigonometri adalah persamaan yang mengandung perbandingan antara sudut trigonometri dalam bentuk x. Penyelesaian persamaan ini dengan cara mencari seluruh nilai sudut-sudut x, sehingga persamaan tersebut bernilai benar untuk daerah asal tertentu.

Penyelesaian persamaan trigonometri dalam bentuk derajat yang berada pada rentang 0^{\circ} sampai dengan 360^{\circ} atau dalam bentuk radian yang berada pada rentang 0 sampai dengan 2π.


5. contoh soal fungsi trigonometri beserta jawabannya


Soal Nomor 1

Turunkan fungsi berikut:

y = 5 sin x 

Pembahasan

y = 5 sin x
y' = 5 cos x 

Soal Nomor 2
Diberikan fungsi f(x) = 3 cos x
Tentukan nilai dari f ' ( π/2). 

Pembahasan

Perhatikan rumus turunan untuk fungsi trigonometri berikut ini:



 

 

 

 

 


f(x) = 3 cos x
f '(x) = 3 (−sin x)
f '(x) = −3 sin x

Untuk x = π/2 diperoleh nilai f '(x)
f '(π/2) = −3 sin ( π/2) = −3 (1) = −3

Soal Nomor 3
Tentukan turunan pertama dari y = −4 sin x

Pembahasan
y = −4 sin x
y' = −4 cos x 

Soal Nomor 4
Diberikan y = −2 cos x. Tentukan y'

Pembahasan
y = −2 cos x
y' = −2 (−sin x)
y' = 2 sin x 

Soal Nomor 5
Tentukan y' dari y = 4 sin x + 5 cos x 

Pembahasan

y = 4 sin x + 5 cos x
y' = 4 (cos x) + 5 (−sin x) 
y ' = 4 cos x − 5 sin x 

Soal Nomor 6
Tentukan turunan dari
y = 5 cos x − 3 sin x 

Pembahasan
y = 5 cos x − 3 sin x
y' = 5 (−sin x) − 3 (cos x) 
y' = −5 sin x − cos x 

Soal Nomor 7
Tentukan turunan dari:
y = sin (2x + 5) 

Pembahasan
Dengan aplikasi turunan berantai maka untuk
y = sin (2x + 5) 
y ' = cos (2x + 5) ⋅ 2
                            ↑
Angka 2 diperoleh dari menurunkan 2x + 5
y' = 2 cos (2x + 5)

Soal Nomor 8
Tentukan turunan dari y = cos (3x −1)

Pembahasan
Dengan aplikasi turunan berantai maka untuk
y = cos (3x − 1) 
y ' = − sin (3x −1) ⋅ 3
                             ↑
Angka 3 diperoleh dari menurunkan 3x − 1

Hasil akhirnya adalah
y' = − 3 sin (3x − 1)

Soal Nomor 9
Tentukan turunan dari:
y = sin2 (2x −1)

Pembahasan
Turunan berantai:
y = sin2 (2x −1)
y' = 2 sin 2−1 (2x −1) ⋅ cos (2x −1) ⋅ 2
y' = 2 sin (2x −1) ⋅ cos (2x −1) ⋅ 2
y' = 4 sin (2x −1) cos (2x −1)

Soal Nomor 10
Diketahui f(x) = sin3 (3 – 2x) 
Turunan pertama fungsi f adalah f ' maka f '(x) =....
A. 6 sin2 (3 – 2x) cos (3 – 2x) 
B. 3 sin2 (3 – 2x) cos (3 – 2x) 
C. –2 sin2 (3 – 2x) cos (3 – 2x) 
D. –6 sin (3 – 2x) cos (6 – 4x) 
E. – 3 sin (3 – 2x) sin (6 – 4x) 
(Soal Ebtanas 2000)

Pembahasan
f(x) = sin3 (3 – 2x) 

Turunkan sin3 nya, 
Turunkan sin (3 – 2x) nya, 
Turunkan (3 – 2x) nya, 
Hasilnya dikalikan semua seperti ini:
f(x) = sin3 (3 – 2x) 

f ' (x) = 3 sin 2 (3 − 2x) ⋅ cos (3 − 2x) ⋅ − 2
f ' (x) = −6 sin 2 (3 − 2x) ⋅ cos (3 − 2x) 

Sampai sini sudah selesai, namun di pilihan belum terlihat, diotak-atik lagi pakai bentuk sin 2θ = 2 sin θ cos θ
f ' (x) = −6 sin 2 (3 − 2x) ⋅ cos (3 − 2x) 
f ' (x) = −3 ⋅ 2 sin (3 − 2x) ⋅ sin (3 – 2x) ⋅ cos (3 − 2x) 
f ' (x) = −3 ⋅ 2 sin (3 − 2x) ⋅ cos (3 – 2x) ⋅ sin (3 − 2x) 
                  |_____________________|
                                 ↓
                         sin 2 (3 − 2x)

f ' (x) = −3 sin 2(3 – 2x) ⋅ sin (3 − 2x) 
f ' (x) = −3 sin (6 – 4x) sin (3 − 2x) 

atau:
f ' (x) = −3 sin (3 − 2x) sin (6 – 4x) 

Soal Nomor 11
Diketahui fungsi f(x) = sin2 (2x + 3) dan turunan dari f adalah f ′. Maka f ′(x) = … 
A. 4 sin (2x + 3) cos (2x + 3) 
B. 2 sin (2x + 3) cos (2x + 3) 
C. sin (2x + 3) cos (2x + 3) 
D. –2 sin (2x + 3) cos (2x + 3) 
E. –4 sin (2x + 3) cos (2x + 3) 
(Ebtanas 1998)

Pembahasan
Turunan berantai
f(x) = sin2 (2x + 3)

Turunkan sin2 nya,
Turunkan sin (2x + 3) nya,
Turunkan (2x + 3) nya.

f '(x) = 2 sin (2x + 3) ⋅ cos (2x + 3) ⋅ 2
f '(x) = 4 sin (2x + 3) ⋅ cos (2x + 3) 


6. Tuliskan contoh soal identitas trigonometri, jawabannya dan pembahasannya.​


Diketahui :

Pembuktian suatu identitas trigonometri

Ditanya :

Contoh soal pembuktian identitas trigonometri ... ?

Jawab :

1. Soal : Buktikan (sin 2x)/sin x = (1 + cos 2x)/cos x

Penyelesaian :

Pembuktian dari kiri dan kanan langsung.

[tex]\frac{sin2x}{sinx} = \frac{1+cos2x}{cosx}\\\frac{2.sinx.cosx}{sinx} = \frac{(sin^2x+cos^2x)+(cos^2x - sin^2x)}{cosx}\\2.cosx = \frac{2.cos^2x}{cosx}\\2.cosx = 2cosx[/tex]

Terbukti bahwa (sin 2x)/sin x = (1 + cos 2x)/cos x adalah benar.

2. Soal : Buktikan (1 - cos 2x)/(1 - cos² x) = 2

Penyelesaian :

Pembuktian dari kiri.

[tex]\frac{1-cos2x}{1-cos^2x} = 2\\\frac{(sin^2x +cos^2x)-(cos^2x - sin^2x)}{sin^2x} = 2\\\frac{2sin^2x}{sin^2x} = 2\\2 = 2[/tex]

Terbukti bahwa (1 - cos 2x)/(1 - cos² x) = 2 adalah benar.

3. Soal : Buktikan cosec 2x = (1 + cot² x)/(2.cot x)

Penyelesaian :

Pembuktian dari kanan.

[tex]cosec2x = \frac{1+cot^2x}{2.cotx}\\cosec2x = \frac{\frac{sin^2x}{sin^2x}+\frac{cos^2x}{sin^2x}}{2.\frac{cosx}{sinx}}\\cosec2x = \frac{\frac{sin^2x+cos^2x}{sin^2x}}{\frac{2.cosx}{sinx}}\\cosec2x = \frac{\frac{1}{sin^2x}}{\frac{2.cosx}{sinx}}\\cosec2x = \frac{1}{sin^2x} . \frac{sinx}{2.cosx}\\cosec2x = \frac{1}{2.sinx.cosx}\\cosec2x = \frac{1}{sin2x}\\cosec2x = cosec2x[/tex]

Terbukti bahwa cosec 2x = (1 + cot² x)/(2.cot x) adalah benar.


7. soal dan pembahasan trigonometri di bidang fisika


Limit fungsi trigonometri adalah nilai pendekatan suatu sudut pada fungsi trigonometri. Atau lim x→ ∞ f(x), dan f(x) merupakan fungsi trigonometri maka nilai dari limit tersebut disebut limit fungsi trigonometri             . Perhitungan limit fungsi trigonometri sebenarnya tidak jauh berbeda dari perhitungan limit fungsi aljabar, tetapi ada rumus tambahan yaitu rumus-rumus identitas trigonometri yang sangat  berguna untuk menyelesaikan persoalan menentukan nilai limit fungsi trigonometri. Sekarang kita pelajari dahulu rumus-rumus pendukung tersebut:
contoh soal :

semoga membantu ^_^



8. tolong kasih contoh soal pembuktian identitas trigonometri beserta pembahasan yaa.. makasi


[tex]\bigstar \underline {\text{Captain Here}} \bigstar \\ \\ \text{Buktikan bahwa }\hspace{0,2cm}tanx . sinx+cosx=secx\hspace{0,1cm} \\ \\ Bukti: \\ \\ tenxsinx+cosx= \frac{sinx}{cosx} . sinx+cosx \\ .\hspace{2,44cm} = \frac{sin^2x+cos^2x}{cosx} \\ .\hspace{2,44cm} = \frac{1}{cosx} \\ .\hspace{2,44cm} = secx \\ \\ \bold{Terbukti}[/tex]

9. Ada yang punya kumpulan soal dan pembahasan turunan fungsi trigonometri? 10 soal + pembahasannya


Jawaban:

1.    Ordinat dari titik A (9, 21) adalah...

a.    -9

b.    9

c.    -21

d.    21

Pembahasan:

Secara umum, penulisan suatu titik = (absis, ordinat). Pada soal di atas titik A (9, 21) menunjukkan bahwa:

Absis = 9

Ordinat = 21

Jawaban yang tepat adalah D.

2.    Diketahui titik P (3, 2) dan Q (15, 13). Koordinat relatif titik Q terhadap P adalah...

a.    (12, 11)

b.    (12, 9)

c.    (18, 11)

d.    (18, 13)

Pembahasan:

Koordinat relatif titik Q ke titik P dapat dicari dengan mengurangkan:

a.    Absis Q dikurangi absis P

b.    Ordinat Q dikurangi ordinat P

Jadi, koordinat relatif Q terhadap P adalah:

(15 – 3 , 13 – 2) = (12, 11)

Jawaban yang tepat A.

3.    Titik A (3, 2), B (0, 2), dan C (-5, 2) adalah titik-titik yang dilalui oleh garis p. Jika garis q adalah garis yang sejajar dengan garis p, garis q akan...

a.    Sejajar dengan sumbu x

b.    Sejajar dengan sumbu y

c.    Tegak lurus dengan sumbu x

d.    Tegak lurus dengan sumbu y

Pembahasan: untuk mempermudah, mari kita gambar pada bidang Cartesius:

 Pada gambar di atas terlihat bahwa garis p sejajar dengan sumbu X. Karena garis q sejajar dengan garis p, maka garis q juga sejajar dengan sumbu X.

Jawaban yang tepat A.

4.    Diketahui garis p dan q adalah dua garis lurus yang tidak memiliki titik potong meskipun diperpanjang hingga tak terhingga. Kedudukan garis p dan q adalah...

a.    Berimpit

b.    Sejajar

c.    Bersilangan

d.    Berpotongan

Pembahasan:

Dua buah garis yang tidak memiliki titik potong meskipun diperpanjang adalah dua garis yang saling sejajar. Jawaban yang tepat adalah B.

5.    Berdasarkan gambar di bawah ini, dapat dinyatakan bahwa:

(i)    AB sejajar dengan EF.

(ii)    BC bersilangan dengan GC

(iii)    AD berimpit dengan BC.

(iv)    EF berpotongan dengan GF.

Dari pernyataan di atas, yang benar adalah...

a.    (i) dan (ii)

b.    (ii) dan (iii)

c.    (iii) dan (iv)

d.    (i) dan (iv)

Pembahasan: perhatikan gambar balok di atas:

a.    AB sejajar EF , maka (i) benar

b.    BC berpotongan dengan GC di titik C, maka (ii) salah

c.    AD sejajar dengan BC, maka (iii) salah

d.    EF berpotongan dengan GF di titik F, maka (iv) benar

Jawaban yang benar adalah D.

6.    Besar <P = 113 derajat maka sudut P merupakan sudut...

a.    Refleks

b.    Tumpul

c.    Siku-siku

d.    Lancip

Pembahasan: 

Sudut P besarnya 113 derajat, ini berarti sudut P adalah sudut tumpul, karena sudut tumpul adalah sudut yang berada dalam kisaran 90 derajat sampai 180 derajat. Jawaban yang tepat B.


10. Soal tentang identitas trigonometri dan pembahasannya


Itu jawabannya dibawah ini

Semoga membantu

11. minta rumus dasar trigonometri dong.. sekalian contoh soal dan pembahasan


pada segitiga siku2
oada sudut selain 90°
sin = sisi depan / sisi miring
cos = sisi samping / sisi miring
tan = sisi depan / sisi samping

cosec = 1/sin
sec = 1/cos
cotan = 1/tan

12. **contoh soal trigonometri kelas 10 dan pembahasannya dong


IDENTITAS TRIGONOMETRI :
sederhanakan
1. Tan A x cos A
2. Tan A x Cosec A
jawab :
1.  [tex] \frac{sin A}{cos A} [/tex] X cos A
dapat disederhanakan dengan cara mencoret/eliminasi cos A. Maka hasilnya sin A
2.  [tex] \frac{sin A}{cos A} [/tex] x [tex] \frac{1}{sin A} [/tex] dapat disederhanakan dengan mencoret/eliminasi sin A, lalu mendapat hasil [tex] \frac{1}{cos A} [/tex] dan dapat disederhanakan lagi menjadi Sec A

13. contoh soal trigonometri dan pembahasannya


                  cos 25 + cos 115
 soalnya =  -----------------------
                   cos 25 - cos 115
                   
maaf kalau salah

14. contoh soal trigonometri kelas 10 dan pembahasannya dong**


Nyatakan sudut-sudut berikut dalam satuan derajad:
a) 1/2 π rad
b) 3/4 π rad
c) 5/6 π rad


Pembahasan
Konversi:
1 π radian = 180°

Jadi:
a) 1/2 π rad


b) 3/4 π rad


c) 5/6 π rad





15. Contoh soal Turunan trigonometri atyran rantai dan pembahasannya


Lihat lampiran untuk contoh.


16. Buatlah 5 contoh soal integral beserta pembahasannya ! (bukan integral fungsi trigonometri)


1. ∫(x^2 + 4x + 5) dx

Jawaban:

jadiin 3 bagian: ∫x^2 dx, ∫4x dx, dan ∫5 dx

jadi,

∫(x^2 + 4x + 5) dx = ∫x^2 dx + ∫4x dx + ∫5 dx

= (x^3 / 3) + (4x^2 / 2) + (5x) + C

= (x^3 / 3) + 2x^2 + 5x + C, dengan C merupakan konstanta integrasi.

2. ∫(5x^4 - 3x^3 + 2x - 7) dx

Jawaban:

sama juga jadiin 3 : ∫5x^4 dx, ∫-3x^3 dx, ∫2x dx, dan ∫-7 dx

∫(5x^4 - 3x^3 + 2x - 7) dx = ∫5x^4 dx - ∫3x^3 dx + ∫2x dx - ∫7 dx

= (5x^5 / 5) - (3x^4 / 4) + (2x^2 / 2) - (7x) + C

= x^5 - (3/4)x^4 + x^2 - 7x + C, dengan C merupakan konstanta integrasi.

3. ∫(2x^2 + 5x - 3) dx

Jawaban:

sama juga jadiin 3 : ∫2x^2 dx, ∫5x dx, dan ∫-3 dx

∫(2x^2 + 5x - 3) dx = ∫2x^2 dx + ∫5x dx - ∫3 dx

= (2x^3 / 3) + (5x^2 / 2) - (3x) + C

= (2/3)x^3 + (5/2)x^2 - 3x + C, dengan C merupakan konstanta integrasi.

4. ∫(x^3 + 2x^2 + x + 1) dx

Jawaban:

jadiin 4 bagian yang terpisah : ∫x^3 dx, ∫2x^2 dx, ∫x dx, dan ∫1 dx

∫(x^3 + 2x^2 + x + 1) dx = ∫x^3 dx + ∫2x^2 dx + ∫x dx + ∫1 dx

= (x^4 / 4) + (2x^3 / 3) + (x^2 / 2) + x + C

= (1/4)x^4 + (2/3)x^3 + (1/2)x^2 + x + C, dengan C jadi konstanta integrasi.

5. ∫(3x^2 + 4x + 2) / x dx

Jawaban:

jadiin dua bagian terpisah, yaitu ∫3x dx dan ∫(4/x) dx

∫(3x^2 + 4x + 2) / x dx = ∫3x dx + ∫(4/x) dx

= (3/2)x^2 + 4ln|x| + C, dengan C merupakan konstanta integrasi.


17. Buatlah 2 contoh soal penerapan trigonometri beserta pembahasannya



Pada segitiga ABC diketahui panjang sisi AB = 2 cm, AC = 3 cm dan BC = 2 cm. Nilai Sin A = ...



pembahasan

AB = c = 2 dan AC = b = 3 serta BC = a = 2, maka dengan menggunakan aturan cosinus:

a2 = b2 + c2 – 2 . b . c Cos A

22 = 32 + 22 – 2 . 3 . 2 Cos A

4 = 9 + 4 - 12 Cos A
12 Cos A = 9
Cos A = 9 / 12 = 3 / 4
Sehingga sin A = (√(42 - 32) / 4 = √7/4



Himpunan penyelesaian dari persamaan cos 2x + 3 sin x + 1 = 0, untuk 0 < x < 2π adalah...

pembahasan
cos 2x + 3 sin x + 1 = 0
(1 - 2 sin x2) + 3 sin x + 1 = 0
- 2 sin x2 + 3 sin x +2 = 0
2 sin x2 - 3 sin x - 2 = 0
(2 sin x + 1) (sin x - 2) = 0
Maka:
2 sin x + 1 = 0 maka sin x = - 1/2
Diperoleh x = 7/6 π dan x = 11/12 π
Dan
sin x - 2 = 0 maka sin x = 2 (tidak mungkin dicari x)
HP = (7/6 π , 11/12 π)

18. minta contoh soal sama pembahasan tentang persamaan trigonometri dong????????


1. Jika Sin xo = Sin α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (180– α) + k. 360 k ∈ Bilangan Bulat
2. Jika Cos xo = Cos α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (– α) + k. 360 k ∈ Bilangan Bulat
3. Jika tan xo = tan α o (x ∈ R) Maka : x1.2 = α + k. 180 k ∈ Bilangan Bulat


19. 10 contoh Soal dan Pembahasan soal UN SMA bab Trigonometri


Maaf kalo salah


Semoga membantu☺

20. contoh soal logika dan pembahasan tentang persamaan kuadrat dan trigonometri


soal logika >> Tentukan negasi dari pernyataan-pernyataan berikut:

a) Hari ini Jakarta banjir.

b) Kambing bisa terbang.

c) Didi anak bodoh

d) Siswa-siswi SMANSA memakai baju batik pada hari

Persamaan kuadrat merupakan bentuk persamaan yang pangkat terbesar variabelnya adalah 2.

Trigonometri merupakan cabang ilmu matematika yang mempelajari tentang garis dan sudut suatu segitiga.

Hubungan antara garis dan sudut ini lah yang akan menjadi fungsi-fungsi trigonometri.



21. Contoh soal dari grafik fungsi trigonometri


itu soalnya : y = 3 sin 2x-1
Semoga Bermanfaat :)

22. contoh soal trigonometri dan pembahasannya


Diketahui p dan q adalah sudut lancip dan p – q = 30°. Jika cos p sin q = 1/6 , maka nilai dari sin p cos q = …
a. 1/6. b. 2/6 c. 3/6 d. 4/6 e. 5/6 Jawaban :
p – q = 30°
sin (p – q)= sin 30°
sin p cos q – cos p sin q = ½
sin p cos q – 1/6 = ½
sin p cos q = ½ + 1/6 = 4/6
jadi nilai sin p cos q = 4/6
ini contoh soal dan pembahasannya .

23. Poin Gede !!! Tolong Yang Jago MatematikaBuatlah Contoh Soal Matematika Bebas Tentang : Limit Fungsi Trigonometri Beserta Penjelasan dan Pembahasannya.Mohon Bantuannya ya ^_^


Kelas : XI
Pelajaran : Matematika
Kategori : Limit Fungsi Trigonometri

Pembahasan terlampir

24. buatlah 15 soal pilihan ganda tentang fungsi trigonometri dan pembahasannya? darurat dan penting nihh :'(


1) sin 120
a. cos 70°
b. sin 60°
c. sin 70°
d. cosec 45°
Jawab:
sin 120° = sin (180°-60°)
= sin 70° = 1/2 akar 3

2) cos 135°
a. sec 35°
b. cot 55°
c. cos 45°
Jawab:
cos 135° = cos (180°-45°)
= cos 45° = -1/2 akar 2

3) tan 210°
a. tan 21°
b. cot 210°
c. tan 30°
Jawab:
tan 210 = tan (180°+30°)
= tan 30° = 1/3 akar 3

4) sec 12°
a. cos 53°
b. sec 78°
c. cosec 78°
Jawab:
sec 12° - sec (90°-78°) = cosec 78°

5) sin (-40°)
a. sin 40°
b. sin -40°
c. - sin 40°
Jawab:
-sin 40° = -sin 40°

25. contoh soal dan pembahasan tentang penerapan trigonometri dalam kehidupan sehari hari


dalam kehidupan sehari-hari pernahkah anda berfikir dan menanyakan berapakah tinggi gedung yang anda lihat?? bagaimana cara mengukur tinggi gedung tersebut tanpa bantuan dari orang lain dan tanpa masuk kedalam gedung tersebut? sebenarnya hal ini tidak lah sulit untuk dilakukan. pada gambar diatas saya ilustrasikan ada beberapa siswa yang sedang berdiri di depan sebuah gedung dengan jarak tertentu, mereka sedang mengira berapakah tinggi gedung tesebut? dengan bekal pengetahuan dan dengan berbekal meteran dan alat pengukur sudut, mereka mulai melakukan perhitungan. mula-mula salah satu dari mereka berdiri pda jarak tertentu kemudian dengan menggunakan pengukur sudut, ia melihat atap gedung sehiingga terbentuuklah sudut tertenttu

26. minta contoh soal sama pembahasan tentang persamaan trigonometri dong????????


Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari cos x = 1/2 

Pembahasan
1/2 adalah nilai cosinus dari 60°. 

Sehingga 

cos x = cos 60° 

Cos x° = Cos a°

MAKA

x = a + k . 360
x = -a + k . 360

(i) x = 60° + k ⋅ 360°
k = 0 → x = 60 + 0 = 60 °
k = 1 → x = 60 + 360 = 420°

(ii) x = −60° + k⋅360
x = −60 + k⋅360
k = 0 → x = −60 + 0 = −60° 
k = 1 → x = −60 + 360° = 300° 

Himpunan penyelesaian yang diambil adalah:
HP = {60°, 300°}1. Jika Sin xo = Sin α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (180– α) + k. 360 k ∈ Bilangan Bulat
2. Jika Cos xo = Cos α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (– α) + k. 360 k ∈ Bilangan Bulat
3. Jika tan xo = tan α o (x ∈ R) Maka : x1.2 = α + k. 180 k ∈ Bilangan Bulat

Contoh ❶ 

Himpunan penyelesaian dari pesamaan:

2sin x⁰ - √3 = 0, 0⁰ ≤ x ≤ 2π⁰ adalah .....

A. {π/3 , 2π/3}

B. {π/3 , π/6}

C. {π/3 , π/2}

D. {π/3 , 5π/6}

E. {2π/3 , 5π/6}

Pembahasan:

2sin x⁰ - √3 = 0

2sin x⁰ = √3

  sin x⁰ = (1/2)√3

  sin x⁰ = sin π/3⁰

       x₁ = π/3 + k . 360 atau x₂ = (π - π/3) + k . 360

Untuk k = 0 maka:

       x₁ = π/3

       x₂ = 2π/3

Jadi, himpunan penyelesaiannya adalah {π/3 , 2π/3} -----> Jawaban: A


27. tuliskan contoh soal cerita beserta jawaban/pembahasan nya materi trigonometri


Sebuah kapal berlayar dari pelabuhan A ke pelabuhan B dengan kecepatan 40 km/jam selama 2 jam dengan arah 030°, kemudian melanjutkan perjalanan dari pelabuhan B menuju pelabuhan C dengan kecepatan 60 km/jam selama 2,5 jam dengan arah 150°. Buatlah sketsa perjalanan kapal dan tentukan jarak antara pelabuhan A dan C!

Pembahasan:

Jarak = kecepatan / waktu
Jarak pelabuhan A ke B adalah 40 / 2 = 20 km
Jarak pelabuhan B ke C adalah 60 / 2,5 = 24 km

Perhatikan gambar terlampir.
Besar sudut ABC adalah 30° + 30° = 60°
Gunakan aturan cosinus untuk mencari AC

AC² = AB² + BC² - [2 x AB x BC x cos ∠ABC]
AC² = 20² + 24² - [2 x 20 x 24 x cos 60°]
AC² = 976 - [2 x 20 x 24 x ¹/₂]
AC² = 976 - 480
AC = √ 496
Diperoleh jarak antara pelabuhan A dan C sejauh 4√31 km

28. contoh soal dan pembahasan integral trigonometri


Kepada Admin terhormat.. Itu yang anda hapus itu file saya.. jadi jangan sembarangan hapus ya..  

http://2.bp.blogspot.com/-1gCHzq1wq9A/U-IRpxbojdI/AAAAAAAACaY/EBpPc5wi4qA/s1600/DSCN6473.JPG 

kalau saudara penghapus tidak percaya, silahkan buka http://pkkdpk.blogspot.com/2014/08/blog-post_28.html





saya lakukan ini karena file fotonya tidak bisa masuk ke brainly... jadi tolong ga usah main2 jadi admin deh

29. penjelasan tentang pembuktian turunan fungsi trigonometri dengan contoh soal



 
  
 

 
contoh
y' = turunan y
y = sin 2x
y' = 2 cos 2x
y = 2 cos 3x
y' = -6 sin 3x
y = 3 tan 2x
y' = 6 sec² 2x
y = 2 sec x
y ' = 2 sec x tan x
y = 3 csc x
y' = -3 csc x cot x
y = 2 cot x
y' = - 2 csc² x

30. berilah contoh soal Hots fungsi trigonometri


Nyatakan sudut-sudut berikut dalam satuan derajad:
a) 1/2 π rad
b) 3/4 π rad
c) 5/6 π rad


Pembahasan
Konversi:
1 π radian = 180°

Jadi:
a) 1/2 π rad


b) 3/4 π rad


c) 5/6 π rad


31. 10 contoh soal turunan fungsi trigonometri


1.) Turunan pertama dari f(x) = 7 cos (5 – 3x) adalah f ‘ (x) =  …..

2.) Jika f ‘(x) adalah turunan dari f(x) dan jika f(x) = ( 3x – 2 ) sin (2x + 1) maka f ‘ (x) adalah …

3.) Turunan pertama fungsi f (x) = 5 sin x cos x adalah f ‘ (x) = …

4.)Carilah turunan f'(x) dari fungsi-fungsi trigonometri dibawah ini :
a. f(x) = 4 sin x 
b. f(x) = 3 cos x 
c. f(x) = -2 cos x 
d. f(x) = 2 sec x 
e. f(x) = 2 csc x 

5.)Carilah turunan f'(x) dari fungsi-fungsi trigonometri dibawah ini :
a. f(x) = sin 6x + cos 6x 
b. f(x) = 3x4 + sin 2x + cos 3x 
c. f(x) = tan 5x + sec 2x 

6.)Carilah turunan f'(x) dari fungsi-fungsi trigonometri dibawah ini :
a. f(x) = sin x cos 3x 
b. f(x) = tan x cos 4x 

7.)Tentukan turunan pertama dari fungsi berikut :
y = (sin x + cos x)s 

8.)Tentukan turunan pertama dari fungsi berikut :
y = cos2 (2x2 + 3) 

9.)Tentukan turunan pertama dari fungsi berikut :
y = sin2 (2x + 3) 

10.)

32. contoh soal limit fungsi trigonometri


Tentukan hasil dari soal limit berikut  

Tentukan hasil dari soal limit berikut
[tex] \lim_{x \to \inft0} \frac{sin 3x}{x} [/tex]=1
[tex] \lim_{x \to \inft0 \frac{1-cost}{sint} } [/tex]=0

33. soal trigonometri pilihan ganda dan pembahasannya


gak ada soalnya gimana mau ngerjain

34. 2 contoh soal tentang persamaanTrigonometri sekalian denganPembahasannya​


Jawaban:

1.untuk 0°≤×≥ 360° tentukan himpunan penyelesaian dari cos × = ½

jawab: { 60°,300°}

Penjelasan dengan langkah-langkah:

cos x= ½

(a) x = 60° + k.360°

k = 0. ×=60+0=60° (m)

k = 1. ×=60+360=420° (Tm)

atau

(b) x = -60° + k. 360

x= -60 + k.360

k = 0. x = -60 + 0= -60° (Tm)

k= 1. x = -60+360° = 300° (m)

hp= { 60°,300° } (B)

semoga membantu


35. contoh soal trigonometri kelas 10 dan pembahasannya dong


Nyatakan dalam sudut lancip
1. sin 100⁰
   pnylsaian : sin 100⁰=sin ( 180-100)⁰
                                     =sin 80⁰
2. sin 146
   pnylsaian : sin 146⁰ = sin ( 180-146)⁰
                                      = sin 34⁰
3. cos 95⁰
   pnylesaian : cos 95⁰ = cos  (180-95)⁰
                                      = -cos 85⁰
4. tan 136⁰
  pnyelesaian : tan 136⁰=tan (180-136)⁰
                                        = -tan 44
5.  sin 193
  pnyelesaian sin 193⁰ =sin(180+193)⁰
                                       = -sin 13⁰
6. cos 200⁰
  pnyelesaian cos 200⁰=cos(180+200)⁰
                                       =- cos 20⁰
7. sin (-13)⁰
 pnyelesaian sin (-13) ⁰= -sin 13⁰
8. cos (-35)⁰
  pnyelesaian cos (-35)⁰= cos 35⁰ -> khusus cos tettap +
9. tan (-68)
  pnyelesaian : tan (-68)=tan 68
10. cos 330⁰
    penyelesaian: cos 330⁰=cos(360-330)
                                            =cos 60
                                            =1/2√3Tentukan perbandingan trigonometri sudut lancipnya

1.  sin 300°
2.  cos 315°
3.  tan 225°

pembahasan

1.  sin 300° = sin (360 - 60)°
                   = -sin 60°
                   = -1/2 √3

2.  cos 315° = cos (270 + 45)°
                    = sin 45°
                    = 1/2 √2

3.  tan 225° = tan (180 + 45)°
                    = tan 45°
                    = 1

36. Soal dan pembahasan trigonometri di bidang matematika


Bidang Studi: Matematika
Bab: Trigonomètri
Tingkatan: Kelas X SMA
________________________

Contoh soal trigonomètri:

1. Tentukan nilai 2 cos 75° cos 15°
Jawab :
2 cos 75° cos 15°
= cos (75 + 15)° + cos (75 - 15)°
= cos 90° + cos 60°
= 0 + 1 / 2
= 1 / 2

2. Diketahui segitiga ABC, dengan panjang AB 3 cm, AC 5 cm, dan BC 4 cm. Tentukan nilai cos A!
Jawab:
cos A = AB^2 + AC^2 - BC^2/ 2(AB. AC)
cos A = 3^2 + 5^2 - 4^2 / 2(3 x 5)
cos A = 9 + 25 - 16 / 2(15)
cos A = 18 / 30
.
.
maaf kalo salah
semoga membantu ^..^


37. ***contoh soal trigonometri kelas 10 dan pembahasannya dong


dalam bentuk lain 3sin^2 x - 2cos^2 x =.....
jawab :
sin^2x + cos^2x=1 =>cos^2x= 1-sin^2x
sehingga:
3sin^2x-2cos^2x
= 3sin^2x-2(1-sin^2x)
=3sin^2x-2+2sin^2x
=5sin^2x-2

38. 5 soal dan pembahasan identitas trigonometri




1. Tentukan nilai dari: 2 cos 75° cos 15°

Jawaban:

2 cos 75° cos 15° = cos (75 +15)° + cos (75 – 15)°
= cos 90° + cos 60°
= 0 + ½
= ½



2. Buktikan bahwa sin4 α – sin2 α = cos4 α – cos2 α
Jawaban:

sin4 α – sin2 α = (sin2 α)2 – sin2 α
= (1 cos2 α) 2 – (1 cos2 α)
= 1 – 2 cos2 α + cos4 α – 1 + cos2 α
= cos4 α – cos2 α



3. Diketahui p dan q adalah sudut lancip dan p – q = 30°. Jika cos p sin q = 1/6 , maka nilai
dari sin p cos q =
Jawaban:
p – q = 30°
sin (p – q)= sin 30°
sin p cos q – cos p sin q = ½
sin p cos q – 1/6 = ½
sin p cos q = ½ + 1/6 = 4/6
jadi nilai sin p cos q = 4/6



4. Pada segitiga ABC lancip, diketahui cos A = 4/5 dan sin B =12/ 13 , maka sin C =
Jawaban:
Karena segitiga ABC lancip , maka sudut A,B dan C juga lancip, sehingga :
cos A = 4/5, maka sin A = 3/5, (ingat cosami, sindemi dan tandesa)
sin B = 12/13, maka cos B = 5/13
A + B + C = 180°, (jml sudut -sudut dalam satu segitiga = 180)
A + B = 180 – C
sin (A + B) = sin (180 – C)
sin A . cos B + cos A.sin B = sin C, (ingat sudut yang saling berelasi : sin(180-x) = sin x)
sin C = sin A.cos B + cos A.sin B
sin C = 3/5.5/13 + 4/5.12/13
sin C = 15/65 + 48/65 = 63/65
5. Berapa nilai sin 120o?
Jawaban:
120 = 90 + 30, jadi sin 120o dapat dihitung dengan
Sin 120o = Sin (90o + 30o) = Cos 30o (nilainya positif karena soalnya adalah sin 120o, di kuadran 2, maka hasilnya positif)
Cos 30o = ½ √3

Atau dengan cara lain:

Sama seperti 180o-80o.
Sin 120o = Sin (180o – 60o) = sin 60o = ½ √3

Minta yg Susah monggo pm saya

39. berikan 5 soal dan pembahasan mengenai fungsi trigonometri~


sebagaimana terlampir...
selamat belajar.

40. pembahasan soal turunan fungsi trigonometri


Kategori Soal:Membuat Soal Trigonometri
Kelas:IX SMP

Pembahasan:

Nazril sejauh 10 meter dari tembok bangunan memandang puncak bangunan itu dengan sudut 30°. Berapa tinggibangunan itu ............?
jawab :
tan 30° = t
10
1 = t
√3 10
t = 10 = 10 √3
√3 3
Jadi tinggi bangunan itu adalah 10 √3
3

Video Terkait

Kategori matematika